Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 106794, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403245

RESUMO

Retinal bipolar and amacrine cells receive visual information from photoreceptors and participate in the first steps of image processing in the retina. Several studies have suggested the operation of aerobic glycolysis and a lactate shuttle system in the retina due to the high production of this metabolite under aerobic conditions. However, whether bipolar cells form part of this metabolic circuit remains unclear. Here, we show that the monocarboxylate transporter 2 is expressed and functional in inner retinal neurons. Additionally, we used genetically encoded FRET nanosensors to demonstrate the ability of inner retinal neurons to consume extracellular lactate as an alternative to glucose. In rod bipolar cells, lactate consumption allowed cells to maintain the homeostasis of ions and electrical responses. We also found that lactate synthesis and transporter inhibition caused functional alterations and an increased rate of cell death. Overall, our data shed light on a notable but still poorly understood aspect of retinal metabolism.


Assuntos
Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Células Bipolares da Retina , Células Bipolares da Retina/metabolismo , Animais , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Camundongos , Metabolismo Energético , Retina/metabolismo , Retina/citologia , Glucose/metabolismo
2.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175628

RESUMO

Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retina/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Glucose/metabolismo , Diabetes Mellitus/metabolismo
3.
Exp Eye Res ; 226: 109352, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528083

RESUMO

Müller cells, the glial cells of the retina, provide metabolic support for photoreceptors and inner retinal neurons, and have been proposed as source of the significant lactate production of this tissue. To better understand the role of lactate in retinal metabolism, we expressed a lactate and a glucose nanosensor in organotypic mouse retinal explants cultured for 14 days, and used FRET imaging in acute vibratome sections of the explants to study metabolite flux in real time. Pharmacological manipulation with specific monocarboxylate transporter (MCT) inhibitors and immunohistochemistry revealed the functional expression of MCT1, MCT2 and MCT4 in Müller cells of retinal explants. The introduction of FRET nanosensors to measure key metabolites at the cellular level may contribute to a better understanding of heretofore poorly understood issues in retinal metabolism.


Assuntos
Células Ependimogliais , Transferência Ressonante de Energia de Fluorescência , Camundongos , Animais , Células Ependimogliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Retina/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...